Category Archives: Water

Drop on the planet: 3 visualizations of Earth’s most precious natural resource

Scarcity of freshwater is a defining feature of the American West, and planet Earth.

Nearly 97% of the world’s H2O is in the oceans. More than two-thirds of the globe’s freshwater is frozen in glaciers and polar ice caps.

Below are a trio of graphics to visualize water on Earth. I’ve found these slides useful for providing context in water-related presentations.

1) The world’s water: drop on a planet

About 70% of the planet’s surface area is covered by water, but the amount is tiny when compared to the Earth’s total volume. The illustration below shows that if you collected all of the planet’s water into a single sphere, it would be 860 miles across. Situated to the right is a 170-mile-wide ball over Kentucky that represents all the fresh liquid water found in the ground, lakes, swamps, and rivers. That miniscule 35-mile-wide dot over Georgia is all the freshwater in lakes and rivers.

Water on Earth graphic
Source: U.S. Geological Survey

2) The water cycle: a closed loop

The diagram below illustrates the water cycle and a critical point: water on Earth is essentially a finite resource and the system is basically a closed one. If you want to be a stickler, it’s not a 100% closed system since there’s a bit of entry and leakage via comets depositing ice and water vapor escaping to space. This graphic also doesn’t show volcanoes emitting steam or water lost to faults on the ocean bed. But the basic point remains: we can reuse water, convert the sea into a potable supply, even try to coax the sky into precipitating with cloud seeding, but we can’t manufacture new water.

U.S. Geological Survey water cycle
Source: U.S. Geological Survey

3) Breaking down the types of water

The graphic below shows that freshwater comprises just 2.5% of the Earth’s total water supply and 69% of that freshwater is locked up in glaciers and icecaps (at least for now). Most of the remaining freshwater is found below our feet as groundwater. Sometimes this subterranean supply is relatively easy to access, but in other locations it may be too deep or costly to extract. Fresh surface water is a rare commodity on this planet. Rivers, for example, account for just 0.006% of all freshwater and 0.0002% of all water found on Earth.
Distribution of water on Earth

We have more slides covering water issues, including supply, demand, quality, infrastructure, and climate change, in our water PowerPoint presentation.

Downloads

Download Slides: Water on EarthDownload Slides: Water on Earth (5.55 MB pptx)
Download Notes: Water on EarthDownload Notes: Water on Earth (621.38 kB pdf)

Related posts

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.

Plotting “dead pool” and other watersheds for Lake Powell and Lake Mead

The elevations of Lake Powell and Lake Mead, two critical reservoirs on the Colorado River, are like the Dow and S&P 500 for water in the Southwest. These closely watched metrics serve as simple barometers and summaries of how things are going in a fiendishly complex system, be it the U.S. economy or a watershed spread across a quarter-million square miles that provides drinking water for nearly 40 million people.

“Water buffaloes,” the professionals who manage the West’s most precious resource, have been sounding bearish in recent days about Powell and Mead, the nation’s two largest reservoirs by capacity. The past 14 years have been the driest for the Colorado River in more than a century of record keeping. On Friday, federal officials announced they will cut releases from Powell from 8.23 million acre-feet to 7.48 million acre-feet, which would be lowest release since the reservoir was filling in the 1960s.

To track water storage in Powell and Mead, I’ve created a dashboard that plots the lake levels and some important benchmarks. Below are some images from the visualization (click to enlarge). There’s also a PowerPoint presentation you can download at the bottom of the post.

Lake Powell elevation graphic Lake Mead elevation graphic

Elevation benchmarks

The Powell chart plots the daily elevation and the Mead chart illustrates the July 1 level; in the former, you can see the annual ebb and flow. I used two different time scales because that’s how I found the data on the U.S. Bureau of Reclamation’s websites (separate offices manage Powell and Mead).

Capacity shows the elevation when the reservoirs are full. For Powell, raising the spillway gates can slightly increase capacity, but flooding in 1983 did nearly overtop Glen Canyon Dam. When a reservoir is at dead pool, the water level is so low that it cannot drain by gravity through the dam’s outlet works. Hydropower can only be generated when the reservoir is above the minimum power pool. For Mead, which supplies the Las Vegas metro area, the elevation of the Southern Nevada Water Authority’s lower intake is shown.

Our dashboard uses lake elevation, but in our PowerPoint deck we also have some slides showing changes in volume. Each metric tells us different things about the status of the reservoirs, but elevation is easier to visualize. Below is a photo I took last April of Powell’s so-called bathtub ring, which is even more exposed today.

Lake Powell and Glen Canyon Dam
Lake Powell and Glen Canyon Dam, April 2012. Photo by Mitch Tobin.

Satellite imagery shows Powell’s decline

Another way to track the status of these reservoirs is by taking repeat photographs, either on Earth or from space, of the same location. Below are two views of Lake Powell, the first showing 2002 vs. 2003, and the second comparing 2012 vs. 2013, based on NASA satellite imagery.

Lake Powell drought photograph

Lake Powell satellite image drought

The PowerPoint deck that you can download below contains a time series of satellite images of Powell from 1999 to 2013. The contrast between 2012 and 2013 illustrates why federal officials are taking action and cutting releases from the reservoir.

Reservoir levels projected to fall

Looking ahead, federal water managers project that Mead will drop another eight feet in 2014 due to reduced releases from Powell. Below is a graphic from Reclamation that shows Powell is likely to keep falling as well.

Lake Powell elevation projection

Basin susceptible to megadroughts

The outlook for precipitation in the basin over the next few years is uncertain, but one thing we know for sure is that the Colorado River is vulnerable to megadroughts, the likes of which we haven’t seen in modern times. The graphic below, from the U.S. Climate Change Science Program, shows the annual flow of the Colorado River over the past 1,200 years. Scientists used tree rings to estimate the river’s volume before the instrumental record, which is shown as a red line. The arrows point out that the basin has been periodically hit with megadroughts that were worse than the one we’ve been experiencing since 2000.
Colorado River drought tree ring record

Climate change expected to shrink Colorado’s flow

Even without considering climate change, the Colorado River would face a challenging future because the demand for its limited–and capricious–supply is increasing along with the Southwest’s population. But scientists project that even less water will flow down the river in the decades to come due to rising temperatures and altered precipitation patterns. The graphic below, from Reclamation’s recent Basin Study, shows that demand is projected to exceed supply on the river (see our earlier post for more details).

Colorado River historical and projected water use and supply

Data sources

The Bureau of Reclamation provides detailed data on Lake Powell and Lake Mead. I pulled the benchmark levels from this Reclamation presentation, specifically page 15.

If you’re keeping score at home, the capacity of elevation of Powell is listed as 3,700 feet, but during floods the reservoir’s elevation can go slightly above this level by raising the spillway gates. In 1983, Powell reached an all-time high elevation of 3,708.34 feet.

The decision to cut releases from Powell was covered by The Arizona Republic,  National Public Radio, and The Salt Lake Tribune, among others.

Downloads

Download Slides: Lake Powell and Lake MeadDownload Slides: Lake Powell and Lake Mead (10.23 MB pptx)
Download Notes: Lake Powell and Lake MeadDownload Notes: Lake Powell and Lake Mead (3.13 MB pdf)

Related posts

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.

Streamer tool traces rivers from sources to sea

The National Atlas has a new feature, Streamer, that lets you trace the flow of any U.S. stream or river, either going upstream to the sources or downstream to the sea.

Below are a couple of screenshots from the tool (click to enlarge). I picked a point near the EcoWest compound in Denver, along Clear Creek. When you trace upstream, you effectively show the watershed that feeds a stream or river, and when you trace the path downstream, you see the circuitous path to the ocean.

 National Atlas Streamer Clear Creek UpstreamStreameNational Atlas Streamer Clear Creek Downstream

Another cool feature of this tool is that it produces a data report on the streams and rivers that you choose to trace. Using the example of Clear Creek, I found that the water will take a 2,487-mile journey from Denver to the Gulf of Mexico via the South Platte, Missouri, and Mississippi rivers, passing through 121 counties that are home to 10.4 million Americans.

To mix things up, I also tried an upstream trace for New Orleans:

National Atlas Streamer New Orleans

When the Mississippi River enters the Gulf of Mexico, its waters have collectively passed through 1,553 U.S. counties containing nearly 85 million residents. The total length of all 7,028 streams and rivers in the Mississippi’s watershed is a mind-boggling 300,243 miles. If you were to string together all of these streams and rivers, this über waterway would wrap around the Earth a dozen times.

What’s great about the Streamer tool is its simplicity: you click on a point and instantly find out where the water is coming from and where it’s going.

If only Lewis and Clark had access to something like this.

Data sources

Streamer doesn’t include every single creek, brook, and rivulet of water in the country. You’ll only see the major streams and rivers that are part of a dataset that you can download here. If you haven’t already, I highly recommend playing around with the National Atlas. which visualizes hundreds of layers of geographic data.

Related posts

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.