Tag Archives: climate change

Snow jobs: America’s $12 billion winter sports economy and climate change

The author at work. Photo by Andy Tarica.
The author at work. Photo by Andy Tarica.

Full disclosure: I love to ski and snowboard, so before reading further, you should know that I’m more of a passionate participant than neutral analyst of America’s snow sports industry.

But whether you’re a ski bum, X Games aspirant, or disinterested flatlander, it’s undeniable that a ton of money is changing hands when it comes to skiing, snowboarding, snowmobiling, and other sports dependent on snow.

In the 2012/2013 season, 8.2 million Americans alpine skied at least once, 7.4 million people snowboarded, and 3.3 million people cross-country skied, for a combined total of nearly 57 million skier-visits. Snowmobiling, which is especially popular in the Upper Midwest, generated more than 7 million visits in just three states combined: Minnesota, Michigan, and Wisconsin.

To cut to the chase: if greenhouse gas emissions continue to climb, climate change is going to endanger America’s winter sports industry. Although a warming atmosphere can hold more water vapor, the precipitation will be more likely to fall as rain than snow, so even parts of the West that get wetter overall could see dramatic reductions in snowfall.

A diminished snowpack will jeopardize water supplies, increase wildfire risks, and transform entire ecosystems. Compared to these impacts, harm to ski bums and resorts may seem trivial, but in economic terms, low-snow years can devastate the tourism that some communities depend on. In the 2009/2010 season, U.S. winter sports trips generated nearly 212,000 jobs, labor income of $7 billion, and total economic value of $12.2 billion.

To illustrate what winter sports mean to the U.S. economy, I’ve created a dashboard on this page that visualizes data in a report from two researchers at the University of New Hampshire. Below is a screenshot (click to enlarge).

EcoWest winter sports dashboard

The Natural Resources Defense Council and Protect Our Winters, two advocacy groups, contracted with Elizabeth Burakowski and Matthew Magnusson to examine winter sports tourism in 38 states. The December 2012 report also estimates how much money each state lost, in jobs and economic value, in a low-snow year compared to a high-snow year.

In a future post, we’ll take a closer look at what the science is telling us about trends in the Western snowpack, but the authors of this report paint a bleak portrait of what’s to come under business-as-usual emissions scenarios:

Without intervention, winter temperatures are projected to warm an additional 4 to 10 degrees Fahrenheit by the end of the century, with subsequent decreases in snow cover area, snowfall, and shorter snow season. Snow depths could decline in the west by 25 to 100 percent. The length of the snow season in the northeast will be cut in half.

Yikes. Better seize those powder days while you can. I know I am.

Below is a summary of some visualizations from the dashboard, the original study, and other data sources.

Snow sports widespread

Here in Colorado, winter tourism is a major economic driver, and it’s no shock that we’re tops in the nation for skiing/snowboarding visits. Colorado accounted for one-fifth of ski and snowboarding visits, while one-eighth took place in California. What surprised me was that all but 12 of the 50 states have a winter sports economy (in reporting their findings, the authors did lump together some alpine powerhouses, such as Illinois and Indiana). If you factor in snowmobiling, the winter sports industry has an impressive geographic reach. In the graphic below, the circles are sized by the number of skiing/snowboarding visits and colored according to the number of snowmobiling visits.

Skiing, snowboarding, and snowmobiling days

Data from another source, the National Ski Areas Association, confirms there’s plenty of skiing and snowboarding taking place outside of the West. I grew up skiing/skidding on the icy hills of Northern New Jersey, Vermont, and New Hampshire, and I can definitively state that the skiing out West is way better, but if you look at the number of visits to U.S. resorts, the Rockies and Pacific regions only make up about 55% of the total.

U.S. skier/snowboarder visits by region

Billions at stake in winter tourism

It’s hard not to spend money while skiing and snowboarding, even if you live in Colorado. Before hitting the slopes, I’ll often fuel up my car at the gas station and fill my belly at my local greasy spoon. At the mountain, my annual ski pass helps pay for the parking attendants, lift operators, and ski patrol. Single-day lift ticket prices are north of $100 at some ski areas, which explains why “resort operations” is the biggest box in the graphic below.

Economic value added of winter tourism industryMany ski areas have villages or minor cities at their bases with restaurants, shops, hotels, and spas. Whether it’s the glitterati buying up garish outfits or local yokels like me purchasing coffee for the drive home, money is circulating in the snow-based economy. In mid-February, at Denver International Airport, the wind-chill outside may be 10-below zero, but the baggage claim is a madhouse of travelers arriving from around the globe, ready to shell out big bucks.

In some cases, entire cities owe their existence to ski areas. Here in Colorado, communities such as Vail, Aspen, Breckenridge, and Telluride are synonymous with their ski mountains. These places see plenty of visitors in spring, summer, and fall. There’s actually some controversy about resorts getting too busy during the “off season.” Even so, winter sports are the magnet for many of these communities, snow is like manna from heaven, and the financial impact of winter sports extends far beyond chic destinations to the more humble places where planes land and tourists drive through. The map below shows that every Western state has more than 1,000 jobs connected to winter sports.

Winter tourism employment

It’s important to remember that the data in our dashboard only tells part of the story. The data focuses on the local economic impact of skiing, snowboarding, and snowmobiling trips. Airline tickets are not included. Nor are the thousands of dollars that people spend on equipment and clothing. Last season, nearly $1.8 billion was spent at snow sports specialty stores on apparel, equipment, and accessories (in roughly equal proportions), according to SnowSports Industries America. Consumers spent about $750 million online on winter sports products.

Low-snow years harm industry

To gauge the impact of climate change, the University of New Hampshire researchers examined what happened to snow sports visits during low-snow years and then estimated the economic hit in the 38 states they studied. As shown below, some states appear to be more resilient than others. Colorado, California, and Utah suffered declines that were less than the national average, but other states, such as Washington, Oregon, and New Hampshire, saw skier visits fall even more than the national average.

Impact of low-snow year on state ski industries

As an example, the graphic below shows that ski resorts in Montana lost $16 million in a low-snow year and winter tourism employment declined by 188 jobs due to the 4% decline in skier visits.

Impact of low snowfall on Montana winter tourism

Industry faces questionable future

Skiing, snowboarding, and snowmobiling are certainly not without their environmental impacts. Fly west out of Denver on a clear day and you’ll see a lot of clear-cut strips marking the runs at the ski resorts. Below is a photo I snapped of Loveland Ski Area, where I wrote some of this post in between runs.

Loveland Ski Area, Colorado
Loveland Ski Area and Eisenhower Tunnel, Colorado. Photo by Mitch Tobin.

I’ve certainly done my share to cook the planet by driving into the mountains to ski and ride. A 114-mile round trip to Loveland from Denver causes my Subaru Forester to emit around 80 pounds of carbon-dioxide equivalent, according to the EPA’s Greenhouse Gas Emissions Calculator.

But for me and millions of other Americans, playing in the snow is essential to our well-being. We’ll neglect family, friends, work, the health of the planet, and other concerns in order to get our white powder fix. Call it an addiction or healthy habit, snow sports are more than fun and games: they’re also an economic engine that climate change threatens to freeze.

Data sources

Climate Impacts on the Winter Tourism Economy, a report by the Natural Resources Defense Council and Protect Our Winters, is the source for data on jobs, economic value, and snow sports visits in the 38 states.

Data on skiing and snowboarding is also available from Snowsports Industries America and the National Ski Areas Association.

Downloads

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.

Video: mountain species, climate change, and the escalator effect

Mountains are especially vulnerable to climate change, so scientists are keeping a close watch on species such as the American pika (Ochotona princeps). This small mammal, which resembles a hamster and is a relative of the rabbit, lives in alpine and subalpine terrain across Western North America.

Although relatively widespread and usually found in protected public lands, the American pika is considered an indicator species for climate change and may face a challenging future. These cute critters are super-sensitive to heat and can die in a matter of hours is exposed to temperatures of 78 degrees or above.

As the mercury continues to rise in the decades ahead, pikas and many other mountain species are expected to ascend in elevation in search of cooler conditions—what’s been dubbed the “escalator effect.” But mountains eventually top out at a summit or ridge, so plants and animals can only climb so high.

“The pika is toast,” is how environmental law expert J.B. Ruhl opened his 2008 Boston University Law Review article on the challenge of administering the Endangered Species Act in an era of climate change.

Although some scientists and conservation groups remain deeply troubled about the pika’s prospects, recent research on the species has suggested it may be more resilient than previously thought.

Because pikas are photogenic and mountains are at the heart of the American West, I thought they would be fitting subjects for our first EcoWest video, which is embedded below (you can also watch on our Vimeo and YouTube channels). This is a new format that we’d like to explore further, so I’d welcome any feedback from viewers.

Escalator effect: climate change and mountains from EcoWest on Vimeo.

Background on boulder bunnies

Pikas live near sea level in parts of Western Canada, but in the United States they’re found much higher up. In places such as Nevada and Southern California, they’re rarely observed below 8,200 feet. In North America, as one moves southward toward warmer climes, pikas live at progressively higher elevations.

Here in Colorado, pikas are a common sight on talus slopes around treeline (roughly 11,000 feet) and above. The five-ounce animals blend in well with the boulders and scree, so you’re likely to hear them chirping first. But they’re not hard to see in summer as they scurry to gather grass and flowers for “hay piles” that will sustain them through the brutal alpine winter.

“Charismatic and conspicuous” is how the National Park Service’s Pikas in Peril project describes the animals, which were called “little chief hares” in the 19th century and are nicknamed “boulder bunnies” today.

American pika in Colorado
American pika in Indian Peaks Wilderness, Colorado. Photo by Mitch Tobin.

Conservation status and climate change

The International Union for the Conservation of Nature’s Red List, which rates the status of species around the world, puts the American pika in its “least concern” category. But the IUCN also notes that “the most pervasive threat affecting the American pika appears to be contemporary climate change.”

The map below (from this presentation by Scott Loarie at Stanford’s Carnegie Institution) shows the probability of pikas going locally extinct in the American West in the 21st century. Areas in red, such as Northern California, Oregon, and the Great Basin, are where pikas face the greatest threats of extirpation. They’re expected to fare better in higher-elevation blue areas, in places like Colorado, Wyoming, and Montana. (This map includes areas with suitable habitat but no pikas; for the outlines of the pika’s current range, see this image.)

Probability of pika extirpation in 21st century

Noted conservation biologist Stuart Pimm, who taught Loarie in graduate school, says that “if Scott’s map is correct, pikas will no longer be charming companions to weary, out-of-breath hikers like me in Nevada, Oregon, and most of California.”

Below is another set of projections from University of Idaho researchers. These maps show the pika’s suitable habitat under three climate change projections: B1 is an optimistic scenario for greenhouse gases, A2 is pessimistic about our ability to contain carbon emissions, and A1B lies in between. According to this study, higher emissions and warmer temperatures will shrink the pika’s range.
Current and projected suitable habitat for pikas

Current and projected suitable habitat for pikas

Steep declines in Great Basin

Besides increasing heat-related stress, global warming could, paradoxically, cause pikas to freeze to death. If warming temperatures thin the snowpack, the animals will have less insulation during the winter, when they retreat beneath the surface but don’t actually hibernate.

In a place like the Great Basin, where climate change is projected to boost summer temperatures and shrink the winter snowpack, pikas face a “perfect storm,” the IPCC says. A 2011 paper in Global Change Biology concluded that the extinction rate for pikas in the Great Basin had increased nearly five-fold over the past decade. Examining 25 sites with historical records of pikas in the 20th century, the researchers found that nearly half of the local extinctions had occurred since 1999. Pikas in the Great Basin have been moving upslope at an average rate of nearly 500 feet per decade since 1999, 11 times faster than before (see this ScienceDaily story for details).

American pika in Indian Peaks Wilderness, Colorado
American pika in Indian Peaks Wilderness, Colorado. Photo by Mitch Tobin.

Resilient species?

While Great Basin pikas appear to be in deep trouble, other research in the American West has found that the species is adapting to the 21st century climate. A 2011 study of 69 historical pika sites in the Southern Rockies, some dating back more than a century, found the animals still present at 65 of the locations.

Since the 1940s, scientists have been observing pikas living in ore dumps near Bodie, California, at about 8,400 feet elevation. “There appears to be no evidence that heat stress in summer at Bodie causes mortality or population decline of pikas on these small habitat islands,” the IUCN said, although warmer temperatures may have inhibited pikas from colonizing unoccupied habitat.

Here’s how the Fish and Wildlife Service describes the situation:

Despite the trends of increasing American pika declines in the Great Basin due to increasing temperatures, there is ample evidence that the species can survive and thrive in some habitats with relatively hot surface temperatures. American pika populations thrive at a lower elevation site in the mountains near Bodie, California and in the hot climates of Craters of the Moon (Idaho) and Lava Beds National Monuments (California). Pika persist at these sites because they reduce activity during hot mid-day temperatures by retreating to significantly cooler conditions under the loose rock areas and perform daily activities during the cooler morning and evening periods. Despite altering their behavior in response to high temperatures, pikas can maintain high birth and low mortality rates.

Feds decline to list pika under ESA

That statement from the Fish and Wildlife Service came in response to a 2007 petition from the Center for Biological Diversity to list the American pika under the Endangered Species Act.

In February 2010, the Fish and Wildlife Service declined to protect the pika under the tough federal law. “Although the American pika could potentially be impacted by climate change, we believe the species as a whole will be able to survive despite higher temperatures in a majority of its range,” the Fish and Wildlife Service said. “We believe the pika will have enough high elevation habitat to ensure its long-term survival.”

Working with the National Oceanic and Atmospheric Administration, the Fish and Wildlife Service developed models to predict if increasing surface temperatures due to climate change would affect the pika (below the surface, in the crevices of a talus slope, temperatures can be as much as 43 degrees cooler).

“New peer-reviewed information and rigorous scientific research demonstrates that the pika is able to survive despite higher temperatures and will have enough suitable high elevation habitat to ensure that it will not face extinction in the forseeable [sic] future,” the agency said. The Center for Biological Diversity called the ruling a “political decision that ignores science and the law.”

The history of the Endangered Species Act certainly has its share of political meddling (see my book Endangered for the full story). But in this case, listing the pika wasn’t a biological slam dunk, in part because the danger lies decades ahead. The Fish and Wildlife Service acknowledged the jeopardy, saying “climate change is a potential threat to the long-term survival of the American pika,” but it concluded that the threat wasn’t urgent enough to warrant regulatory action. About 93 percent of the pika’s habitat is already under federal control and 30 percent is designated as wilderness.

Other species moving uphill

Pikas are just one of many mountain species that are being forced to adapt to climate change by moving uphill.

In August, researchers reported in Ecology and Evolution that plants have been scaling a mountain range near Tucson, Arizona in response to climate change. By re-examining a transect in the Santa Catalina Mountains five decades after a 1963 survey, scientists found “large changes in the elevational ranges of common montane plants” and concluded that “the Southwest is already experiencing a rapid vegetation change.” (See this story from the University of Arizona for more details on the study.)

As shown in the figure below, a Southern Arizona mountain is a layer cake of life zones, ranging from the Sonoran Desert at the bottom to a spruce-fir forest at the top. Enough warming could push the top layers right off these mountains.

Life zones in a typical southern Arizona mountain

Mountains and climate change

Anyone who has climbed to the top of West’s tallest mountains knows that biological diversity tends to decline the higher up you go. Here in Colorado, the tundra above treeline is a harsh environment (it’s already snowing in September), so few species can survive. Yet many mountains are biological gems with large numbers of endemic species found nowhere else. “Although species richness decreases with elevation, mountain regions support many different ecosystems and have among the highest species richness globally,” according to the Intergovernmental Panel on Climate Change.

Here’s how the U.S. Global Change Research Program summed up the situation:

Animal and plant species that live in the mountains are among those particularly sensitive to rapid climate change. They include animal species such as the grizzly bear, bighorn sheep, pika, mountain goat, and wolverine. Major changes have already been observed in the pika as previously reported populations have disappeared entirely as climate has warmed over recent decades. One reason mountain species are so vulnerable is that their suitable habitats are being compressed as climatic zones shift upward in elevation. Some species try to shift uphill with the changing climate, but may face constraints related to food, other species present, and so on. In addition, as species move up the mountains, those near the top simply run out of habitat.

In 2010, the Center for Biological Diversity also petitioned the Fish and Wildlife Service to grant Endangered Species Act protections to four other mountaintop species: the ‘i‘iwi, a Hawaiian songbird; the white-tailed ptarmigan, a grouse-like bird that lives in the Rockies; Bicknell’s thrush, a songbird from the Northeast; and the San Bernardino flying squirrel of Southern California. All of these petitions are currently under review.

Winners and losers

On balance, scientists see global warming as a threat to fragile mountain ecosystems, but some montane species may actually benefit from climate change.

In 2010, scientists reported in Nature that yellow-bellied marmots (Marmota flaviventris) had increased in both size and number in response to warming conditions. Warmer weather means less time hibernating, more time fattening up, and therefore a higher survival rate for this type of ground squirrel. “Earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation,” the scientists concluded. (See this companion story in Nature and segment on NPR for more on the marmot study.)

Marmot in Holy Cross Wilderness, Colorado
Marmot in Holy Cross Wilderness, Colorado. Photo by Mitch Tobin.

Climate change will create winners and losers, not only among high-country critters but also in human society and the global economy. A resurgent marmot population will have implications for other species in their habitat, while any declines among pikas will affect their own ecological niche. As challenging as it is to predict the future range and behavior of one species, the situation gets even more complicated once you factor in the many interconnections in the web of life.

Downloads

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.

Climate context for Colorado floods: heavy precipitation, wildfires are on the rise

The heavy rains and flooding here in Colorado have been off the charts, even prompting the National Weather Service to describe the precipitation as “biblical” in its proportions.

At Discover Magazine, Tom Yulsman reports that areas with the highest rainfall totals have experienced a 1,000-year event–a storm that’s expected to occur once a millennium. Check out this graphic from Climate Central:

Climate Central Boulder rainfall
Source: Climate Central

Because the flooding in Colorado is so extreme and generating so much attention, I wanted to offer some context by sharing some graphics and thoughts. Rain and snow totals jump around from year to year, but there seems to be an increasing trend of very heavy precipitation events in the United States.

What’s more troubling is that scientists are projecting even more deluges (and droughts) in the years and decades to come. Warmer air can hold more moisture, and higher temperatures will be increasing evaporation rates, so researchers are expecting extreme storms like the one in Colorado to become increasingly common as climate change manifests itself in the hydrological cycle.

Add the growing intensity of wildfires in the West, which in recent years have charred many of the watersheds that are now flooding along Colorado’s Front Range, and you have recipe for more costly, deadly disasters. I’ll leave it to scientists to sort out whether there’s any climate change fingerprint in this event, but the projections for the future are worrisome because warming is also expected to intensify wildfire behavior in the West.

Trend toward more deluges

The graphic below, from the U.S. Global Change Research Program, shows the percentage increases from 1958 to 2007 in the number of days with very heavy precipitation, which is defined as the wettest 1 percent of events (the original study is here). The trend has been especially pronounced in the Northeast.

Days with very heavy precipitation increasing

The U.S. Environmental Protection Agency has two interesting charts on heavy rainfall trends. The first one shows that extreme one-day precipitation events have been rising in recent years, but there’s a ton of year-to-year variability. The orange line is a nine-year weighted average. EPA notes that “in recent years, a larger percentage of precipitation has come in the form of intense single-day events.”

Extreme one-day precipitation events

The second graphic shows what percentage of the contiguous 48 has experienced much higher-than-normal precipitation in any given year. The trend is more ambiguous in this chart, but there’s definitely been a spike in recent years.

Unusually high annual precipitationColorado in drought

Paradoxically, the torrential rains that we’ve been experiencing in Colorado have come while nearly all of the state is in drought. Below is the latest U.S. Drought Monitor for Colorado. It was released yesterday but based on data through Tuesday. It’ll be interesting to see what this map looks like next week.

Colorado drought monitor

Warming to worsen problem

Looking ahead, we can expect deluges like the one in Colorado to increase in frequency. “Global warming is expected to lead to a large increase in atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes,” wrote researchers in this 2009 paper in the Proceedings of the National Academy of Sciences.

Overall, the Southwest and places like the Colorado River Basin are expected to get drier, while the Pacific Northwest is projected to get wetter. Our climate deck , as well as posts on water risk/stress maps and the Colorado River Basin Study, have more on this.

The EPA and Union of Concerned Scientists provide good discussions of the impact of climate change on extreme precipitation events. Flooding causes billions of dollars in damage in the United States annually–in a typical year, it’s the most costly form of extreme weather–so the economic implications of this trend are significant.

In Colorado, the rains are finally letting up in most places and the worst appears to be over. We’ve only received about 3 inches here in Northwest Denver, but that’s actually a whopping total for us. Settlers used to call the western Great Plains the Great American Desert.

The American West has always been a region where residents must navigate between the Scylla and Charybdis of drought and flood, but climate change is making those monsters more menacing. Thankfully, this once-in-a-lifetime storm for parts of the Front Range has only killed a handful of people, but that number could rise. The roar of the Black Hawk helicopter that just buzzed overhead and the stunning images of the flooding are stark reminders that this major disaster will be felt locally for years to come.

Post-fire flooding

There’s also a powerful connection between the worsening wildfire problem in places like Colorado and subsequent flooding, especially during summer, when the North American monsoon taps subtropical moisture and pumps it over the Southwest’s mountainous terrain. Wildfires can incinerate the vegetation that tempers the rainfall and keeps soil in place, thereby dramatically increasing the volume of runoff, sometimes with deadly results downstream. Along the Colorado Front Range, this threat has become a regular feature of the hazardous weather outlook that the National Weather Service publishes.

Climate change is expected to dramatically increase the amount of acres burned in the West, as shown in the graphic below from a recent Harvard study, so if business as usual continues with global greenhouse gas emissions, it looks like the ingredients will be in place for many more calamities like the one we’re now witnessing in Colorado.

Percentage increase in area burned
Source: Xu Yue, Harvard School of Engineering and Applied Sciences

Downloads

EcoWest’s mission is to analyze, visualize, and share data on environmental trends in the North American West. Please subscribe to our RSS feed, opt-in for email updates, follow us on Twitter, or like us on Facebook.